Câu 1 (NB): Thé tích khối lập phương cạnh 2a bằng:

A. $8a^3$
B. $2a^3$
C. a^3
D. $6a^3$

Câu 2 (NB): Cho hàm số $y = f(x)$ có bảng biến thiên như sau

<table>
<thead>
<tr>
<th>x</th>
<th>y'</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-\infty$</td>
<td>$-$</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$+$</td>
<td>5</td>
</tr>
<tr>
<td>$+\infty$</td>
<td>$-$</td>
<td>$-\infty$</td>
</tr>
</tbody>
</table>

Giá trị cực đại của hàm số đã cho bằng:

A. 1
B. 2
C. 0
D. 5

Câu 3 (NB): Trong không gian $Oxyz$, cho hai điểm $A(1;1;-1)$ và $B(2;3;2)$. Véc tơ \overrightarrow{AB} có tọa độ là:

A. $(1;2;3)$
B. $(-1;-2;3)$
C. $(3;5;1)$
D. $(3;4;1)$

Câu 4 (NB): Cho hàm số $y = f(x)$ có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A. $(0;1)$
B. $(-\infty;-1)$
C. $(-1;1)$
D. $(-1;0)$

Câu 5 (NB): Với a và b là hai số thực dương tủy ý, $\log(ab^2)$ bằng

A. $2\log a + \log b$
B. $\log a + 2\log b$
C. $2(\log a + \log b)$
D. $\log a + \frac{1}{2}\log b$

Câu 6 (NB): Cho $\int_0^1 f(x)dx = 2$ và $\int_0^1 g(x)dx = 5$, khi đó $\int_0^1 [f(x) - 2g(x)]dx$ bằng
Câu 7 (NB): Thé tích của khối cầu bán kính a bằng

A. $\frac{4\pi a^3}{3}$
B. $4\pi a^3$
C. $\frac{\pi a^3}{3}$
D. $2\pi a^3$

Câu 8 (NB): Tập nghiệm của phương trình $\log_2(x^2 - x + 2) = 1$ là

A. \{0\}
B. \{0;1\}
C. \{-1;0\}
D. \{1\}

Câu 9 (TH): Trong không gian $Oxyz$, mặt phương (Oxz) có phương trình là

A. $0 = z$
B. $0 = x + y + z$
C. $y = 0$
D. $x = 0$

Câu 10 (TH): Hộ nguyên hàm của hàm số $f(x) = e^x + x$ là:

A. $e^x + x^2 + C$
B. $e^x + \frac{1}{2}x^2 + C$
C. $\frac{1}{x+1}e^x + \frac{1}{2}x^2 + C$
D. $e^x + 1 + C$

Câu 11 (NB): Trong không gian $Oxyz$, đường thẳng $d : \frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2}$ đi qua điểm nào dưới đây?

A. $Q(2;-1;2)$
B. $M(-1;-2;-3)$
C. $P(1;2;3)$
D. $N(-2;1;-2)$

Câu 12 (NB): Với k và n là hai số nguyên dương tùy ý thỏa mãn $k \leq n$, mệnh đề nào dưới đây đúng?

A. $C^k_n = \frac{n!}{k!(n-k)!}$
B. $C^k_n = \frac{n!}{k!}$
C. $C^k_n = \frac{n!}{(n-k)!}$
D. $C^k_n = \frac{k!(n-k)!}{n!}$

Câu 13 (NB): Cho cặp số cộng (u_n) có số hạng đầu $u_1 = 2$ và công sai $d = 5$. Giả trị của u_4 bằng

A. 22
B. 17
C. 12
D. 250

Câu 14 (NB): Điểm nào trong hình vẽ bên là điểm biểu diễn số phức $z = -1 + 2i$?

A. N
B. P
C. M
D. Q
Câu 15 (TH): Đường cong trong hình vẽ bên là đồ thị hàm số nào dưới đây?

A. \(y = \frac{2x-1}{x-1} \)
B. \(y = \frac{x+1}{x-1} \)
C. \(y = x^4 + x^2 + 1 \)
D. \(y = x^3 - 3x - 1 \)

Câu 16 (NB): Cho hàm số \(y = f(x) \) liên tục trên đoạn [1;3] và có đồ thị như hình vẽ bên. Gọi \(M \) và \(m \) lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số đã cho trên đoạn [1;3]. Giá trị của \(M - m \) bằng

A. 0
B. 1
C. 4
D. 5

Câu 17 (TH): Cho hàm số \(f(x) \) có đạo hàm \(f'(x) = x(x-1)(x+2)^3; \forall x \in \mathbb{R} \). Sở điểm cực trị của hàm số đã cho là

A. 3
B. 2
C. 5
D. 1

Câu 18 (TH): Tìm các số thực \(a \) và \(b \) thỏa mãn \(2a + (b+i)i = 1+2i \) với \(i \) là đơn vị ảo.

A. \(a = 0; b = 2 \)
B. \(a = \frac{1}{2}; b = 1 \)
C. \(a = 0; b = 1 \)
D. \(a = 1; b = 2 \)

Câu 19 (TH): Trong không gian \(Oxyz \), cho hai điểm \(I(1;1;1) \) và \(A(1;2;3) \). Phương trình của mặt cầu tâm \(I \) và đi qua \(A \) là

A. \((x+1)^2 + (y+1)^2 + (x+1)^2 = 29 \)
B. \((x-1)^2 + (y-1)^2 + (x-1)^2 = 5 \)
C. \((x-1)^2 + (y-1)^2 + (x-1)^2 = 25 \)
D. \((x+1)^2 + (y+1)^2 + (x+1)^2 = 5 \)

Câu 20 (TH): Đặt \(\log_3 2 = a \), khi đó \(\log_{16} 27 \) bằng

A. \(\frac{3a}{4} \)
B. \(\frac{3}{4a} \)
C. \(\frac{4}{3a} \)
D. \(\frac{4a}{3} \)

Câu 21 (TH): Kí hiệu \(z_1, z_2 \) là hai số phức của phương trình \(z^2 - 3z + 5 = 0 \). Giá trị của \(|z_1| + |z_2| \) bằng:

A. \(2 \sqrt{5} \)
B. \(\sqrt{5} \)
C. 3
D. 10
Câu 22 (TH): Trong không gian Oxyz, khoảng cách giữa hai mặt phẳng \((P)\): \(x+2y+2z-10=0\) và \((Q)\): \(x+2y+2z-3=0\) bằng:

A. \(\frac{8}{3}\)
B. \(\frac{7}{3}\)
C. 3
D. \(\frac{4}{3}\)

Câu 23 (TH): Tập nghiệm của bất phương trình \(3^{x-2x} < 27\) là:

A. \((-\infty; -1)\)
B. \((3;+\infty)\)
C. \((-1;3)\)
D. \((-\infty;-1)\cup(3;+\infty)\)

Câu 24 (TH): Diện tích phần hình phẳng gạch chéo trong hình vẽ bên dưới tính theo công thức nào dưới đây?

A. \(\int_{-1}^{2} (2x^2 - 2x - 4)\,dx\)
B. \(\int_{-1}^{2} (-2x + 2)\,dx\)
C. \(\int_{-1}^{2} (2x - 2)\,dx\)
D. \(\int_{-1}^{2} (-2x^2 + 2x + 4)\,dx\)

Câu 25 (TH): Cho khối nón có độ dài đường sinh bằng 2\(a\) và bán kính đáy bằng \(a\). Thể tích của khối nón đã cho bằng

A. \(\frac{\sqrt{3}\pi a^3}{3}\)
B. \(\frac{\sqrt{5}\pi a^3}{2}\)
C. \(\frac{2\pi a^3}{3}\)
D. \(\frac{\pi a^3}{3}\)

Câu 26 (NB): Cho hàm số \(y = f(x)\) có bảng biến thiên như sau:

<table>
<thead>
<tr>
<th>x</th>
<th>-(\infty)</th>
<th>1</th>
<th>+(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

A. 4
B. 1
C. 3
D. 2

Câu 27 (VD): Cho khối chóp từ giao diện cơ tạt các cạnh bằng 2\(a\). Thể tích của khối chóp đã cho bằng:

A. \(\frac{4\sqrt{2}a^3}{3}\)
B. \(\frac{8a^3}{3}\)
C. \(\frac{8\sqrt{2}a^3}{3}\)
D. \(\frac{2\sqrt{2}a^3}{3}\)

Câu 28 (TH): Hàm số \(f(x) = \log_2\left(x^2 - 2x\right)\) có đạo hàm:

A. \(f'(x) = \frac{\ln 2}{x^2 - 2x}\)
B. \(f'(x) = \frac{1}{(x^2 - 2x)\ln 2}\)
C. \(f'(x) = \frac{(2x - 2)\ln 2}{x^2 - 2x}\)
D. \(f'(x) = \frac{2x - 2}{(x^2 - 2x)\ln 2}\)
Câu 29 (VD): Cho hàm số \(y = f(x) \) có bảng biến thiên như sau:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>-2</th>
<th>0</th>
<th>2</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>(f(x))</td>
<td>(-\infty)</td>
<td>1</td>
<td>(-2)</td>
<td>(-2)</td>
<td>(+\infty)</td>
</tr>
</tbody>
</table>

Số nghiệm thực của phương trình \(2f(x) + 3 = 0 \) là:

A. 4
B. 3
C. 2
D. 1

Câu 30 (VD): Cho hình lập phương ABCD.A’B’C’D’. Góc giữa mặt phẳng (A’B’CD) và (ABC’D’) bằng:

A. 30°
B. 60°
C. 45°
D. 90°

Câu 31 (VD): Tổng tất cả các nghiệm của phương trình \(\log_3 (7 - 3^x) = 2 - x \) bằng:

A. 2
B. 1
C. 7
D. 3

Câu 32 (VD): Một khối do chim gồm hai khối trụ \((H_1), (H_2)\) xếp chồng lên nhau, lần lượt có bán kính đáy và chiều cao tương ứng là \(r_1, h_1, r_2, h_2 \) thỏa mãn \(r_2 = \frac{1}{2} r_1, h_2 = 2h_1 \) (tham khảo hình vẽ). Biết rằng thể tích của toàn bộ khối do chim bằng 30cm³. Tính thể tích khối trụ \((H_1)\) bằng:

A. 24cm³
B. 15cm³
C. 20cm³
D. 10cm³

Câu 33 (VD): Họ nguyên hàm của hàm số \(f(x) = 4x(1 + \ln x) \) là:

A. \(2x^2 \ln x + 3x^2 \)
B. \(2x^2 \ln x + x^2 \)
C. \(2x^2 \ln x + 3x^2 + C \)
D. \(2x^2 \ln x + x^2 + C \)

Câu 34 (VD): Cho hình chóp S.ABCD có đáy là hình thoi cạnh \(a, b \), \(\angle BAD = 60^\circ \), SA = \(a \) và SA vuông góc với mặt phẳng đáy. Khoảng cách từ B đến mặt phẳng \((SCD)\) bằng:

A. \(\frac{\sqrt{21a}}{7} \)
B. \(\frac{\sqrt{15a}}{7} \)
C. \(\frac{\sqrt{21a}}{3} \)
D. \(\frac{\sqrt{15a}}{3} \)

Câu 35 (VD): Trong không gian Oxz, cho mặt phẳng \((P)\): \(x + y + z - 3 = 0 \) và đường thẳng \(d: \frac{x}{1} = \frac{y + 1}{2} = \frac{z - 2}{-1} \). Hinh chiếu vuông góc của \(d \) trên \((P)\) có phương trình là:

A. \(\frac{x + 1}{-1} = \frac{y + 1}{3} = \frac{z + 1}{5} \)
B. \(\frac{x - 1}{3} = \frac{y - 1}{-2} = \frac{z - 1}{-1} \)
C. \(\frac{x - 1}{1} = \frac{y - 1}{4} = \frac{z - 1}{-5} \)
D. \(\frac{x - 1}{1} = \frac{y - 4}{1} = \frac{z + 5}{1} \)
Câu 36 (VD): Tạp hổp tất cả các giá trị thực của tham số m để hàm số $y = -x^3 - 6x^2 + (4m - 9)x + 4$ nghịch biến trên khoảng $(-\infty, -1)$ là:

A. $(-\infty; 0]$
B. $[-\frac{3}{4}; +\infty)$
C. $(-\infty; -\frac{3}{4}]$
D. $[0; +\infty)$

Câu 37 (VD): Xét các số phức z thỏa mãn $(z + 2i)(\bar{z} + 2)$ là số thuận áó. Biết rằng tập hợp tất cả các điểm biểu diễn của z là một đường tròn, tâm của đường tròn đó có tọa độ là:

A. $(1; 1)$
B. $(1; -1)$
C. $(-1; 1)$
D. $(-1; -1)$

Câu 38 (VD): Cho $\int_{a}^{b} \frac{x}{(x+2)^3} \, dx = a + b \ln 2 + c \ln 3$, với a, b, c là các số hữu tỷ. Giá trị của $3a + b + c$ bằng:

A. -2
B. -1
C. 2
D. 1

Câu 39 (VDC): Cho hàm số $y = f(x)$. Hàm số $y = f'(x)$ có bằng biến thiên như sau:

![Bất phương trình $f(x) < e^x + m$ được với mọi $x \in (-1; 1)$ khi và chỉ khi:](image)

A. $m \geq f(1) - e$
B. $m > f(-1) - \frac{1}{e}$
C. $m \geq f(-1) - \frac{1}{e}$
D. $m > f(1) - e$

Câu 40 (VD): Có hai đầy gcâ đô điểm nhau, mỗi đầy gcâ ba gcâ. Xếp ngẫu nhiên 6 học sinh, gồm 3 nam và 3 nữ, ngẫu vào hai đầy gcâ đô sao cho mỗi gcâ có đúng một học sinh nghiệp. Xác suất để mỗi học sinh nam đều ngồi đôi điểm với một học sinh nữ bằng:

A. $\frac{2}{5}$
B. $\frac{1}{20}$
C. $\frac{3}{5}$
D. $\frac{1}{10}$

Câu 41 (VDC): Trong không gian $Oxyz$, cho hai điểm $A(2; -2; 4); B(-3; 3; -1)$ và mặt phẳng $(P): 2x - y + 2z - 8 = 0$. Xét điểm M là điểm thay đổi thuộc (P), giá trị nhỏ nhất của $2MA^2 + 3MB^2$ bằng:

A. 135
B. 105
C. 108
D. 145

Câu 42 (VD): Có bao nhiêu số phức z thỏa mãn $|z|^2 = 2|z + \bar{z}| + 4$ và $|z - 1 - i| = |z - 3 + 3i|$?

A. 4
B. 3
C. 1
D. 2
Câu 43 (VDC): Cho hàm số \(y = f(x) \) liên tục trên \(\mathbb{R} \) và có độ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số \(m \) để phương trình \(f(\sin x) = m \) có nghiệm thuộc khoảng \((0; \pi)\) là

A. \([-1;3)\]
B. \((-1;1)\)
C. \((-1;3)\)
D. \([-1;1)\)

Câu 44 (VDC): Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng 5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi theo số dư nợ thực tế của tháng đó. Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới dưới đây?

A. 2,22 triệu đồng
B. 3,03 triệu đồng
C. 2,25 triệu đồng
D. 2,20 triệu đồng

Câu 45 (VDC): Trong không gian \(Oxyz \), cho điểm \(E(2;1;3) \), mặt phương \((P) \): \(2x + 2y - z - 3 = 0 \) và mặt cầu \((S) \): \((x - 3)^2 + (y - 2)^2 + (z - 5)^2 = 36 \). Gọi \(\Delta \) là đường thẳng đi qua \(E \), nằm trong \((P) \) và cắt \((S) \) tại hai điểm có khoảng cách nhở nhất. Phương trình của \(\Delta \) là:

A. \(\begin{cases} x = 2 + 9t \\ y = 1 + 9t \\ z = 3 + 8t \end{cases} \)
B. \(\begin{cases} x = 2 - 5t \\ y = 1 + 3t \\ z = 3 \end{cases} \)
C. \(\begin{cases} x = 2 + t \\ y = 1 + 3t \\ z = 3 \end{cases} \)
D. \(\begin{cases} x = 2 + 4t \\ y = 1 + 3t \\ z = 3 - 3t \end{cases} \)

Câu 46 (VDC): Một biến quảng cáo có dạng hình elip với bốn đỉnh \(A_1, A_2, B_1, B_2 \) như hình vẽ bên. Biết chi phí để son phân tô đàm là 200.000 đồng/ \(m^2 \) và phân còn lại là 100.000 đồng/\(m^2 \). Hỏi số tiền để son theo cách trên gần nhất với số tiền nào dưới dưới đây, biết \(A_1A_2 = 8m, B_1B_2 = 6m \) và từ giác MNPQ là hình chữ nhật có \(MQ = 3m \) ?

A. 7.322.000 đồng
B. 7.213.000 đồng
C. 5.526.000 đồng
D. 5.782.000 đồng

Câu 47 (VDC): Cho khối lượng từ ABC.A’B’C’ có thể tích bằng 1. Gọi M, N là trung điểm của các đoạn thẳng AA’ và BB’. Đường thẳng CM cắt đường thẳng C’A’ tại P, đường thẳng CN cắt đường thẳng C’B’ tại Q. Thể tích của khối đa diện lồi A’MPB’NQ bằng:

A. 1
B. \(\frac{1}{3} \)
C. \(\frac{1}{2} \)
D. \(\frac{2}{3} \)

Câu 48 (VDC): Cho hàm số \(f(x) \) có bảng xét dấu của đạo hàm như sau

\[
\begin{array}{|c|c|c|}
\hline
x & -1 & 1 \\
\hline
f'(x) & + & - \\
\hline
f(x) & 1 & 1 \\
\hline
\end{array}
\]

Hãy tìm đạo hàm thứ hai của \(f(x) \) tại \(x = 0 \).
Hàm số \(y = 3f(x+2) - x^3 + 3x \) đồng biến trên khoảng nào dưới đây?

A. \((1; +\infty)\)
B. \((-\infty; -1)\)
C. \((-1; 0)\)
D. \((0; 2)\)

Câu 49 (VDC): Gọi S là tập hợp tất cả các giá trị của tham số \(m \) để bất phương trình \(m^2(x^4 - 1) + m(x^2 - 1) - 6(x - 1) \geq 0 \) đúng với mọi \(x \in \mathbb{R} \). Tông giá trị của tất cả các phần tử thuộc tập S bằng:

A. \(-\frac{3}{2}\)
B. 1
C. \(-\frac{1}{2}\)
D. \(\frac{1}{2}\)

Câu 50 (VDC): Cho hàm số \(f(x) = mx^4 + nx^3 + px^2 + qx + r \) \((m, n, p, q, r \in \mathbb{R})\). Hàm số \(y = f'(x) \) có đồ thị như hình vẽ bên. Tập nghiệm của phương trình \(f(x) = r \) có số phần tử là

A. 4
B. 3
C. 1
D. 2

-------------------------------- HẾT --------------------------------
BÀI THI: TOÁN
THỰC HIỆN: BAN CHUYÊN MÓN TUYENSINH247.COM

BẢNG DÁP ÁN

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>11</td>
<td>C</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>12</td>
<td>A</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>13</td>
<td>B</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>14</td>
<td>D</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>15</td>
<td>B</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>16</td>
<td>D</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>17</td>
<td>A</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>18</td>
<td>D</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>19</td>
<td>B</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>B</td>
<td>20</td>
<td>B</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>A</td>
<td>32</td>
<td>C</td>
<td>33</td>
</tr>
<tr>
<td>34</td>
<td>A</td>
<td>35</td>
<td>C</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>D</td>
<td>38</td>
<td>C</td>
<td>39</td>
</tr>
<tr>
<td>41</td>
<td>A</td>
<td>42</td>
<td>B</td>
<td>43</td>
</tr>
<tr>
<td>44</td>
<td>D</td>
<td>45</td>
<td>C</td>
<td>46</td>
</tr>
<tr>
<td>47</td>
<td>D</td>
<td>48</td>
<td>C</td>
<td>49</td>
</tr>
<tr>
<td>50</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Câu 1:

Phương pháp

Thể tích khối lập phương cạnh a là $V = a^3$

Cách giải

Thể tích khối lập phương cạnh $2a$ là $V = (2a)^3 = 8a^3$

CHỌN A

Câu 2:

Phương pháp

Sử dụng kĩ thuật độc biến thiên tìm điểm cực đại và giá trị cực đại của hàm số.

Cách giải

Quan sát độc biến thiên ta thấy hàm số đạt cực đại tại điểm $x = 2$ và giá trị cực đại của hàm số $y_{CD} = 5$.

CHỌN D

Câu 3:

Phương pháp

Cho hai điểm $A(x_1; y_1; z_1), B(x_2; y_2; z_2)$. Khi đó véc tơ $\overrightarrow{AB} = (x_2 - x_1; y_2 - y_1; z_2 - z_1)$

Cách giải:
Vì $A(1;1;−1)$ và $B(2;3;2)$ nên $\overrightarrow{AB} = (1;2;3)$.

CHÍNH SÁCH A

Câu 4:

Phương pháp

Sử dụng kỹ năng đồ thị hàm số. Các khoảng đồ thị hàm số đi lên là các khoảng đồng biến của hàm số.

Cách giải

Quan sát đồ thị hàm số ta thấy trong khoảng $(−1;0)$ thì đồ thị hàm số đi lên nên hàm số đồng biến trong khoảng $(−1;0)$.

CHÍNH SÁCH D

Câu 5:

Phương pháp

Sử dụng các công thức biến đổi logarit: $\log(xy) = \log x + \log y$; $\log x^a = a \log x$ với $x; y$ là các số thực dương.

Cách giải

Ta có: $\log(ab^2) = \log a + \log b^2 = \log a + 2 \log b$

CHÍNH SÁCH B

Câu 6:

Phương pháp

Sử dụng tính chất tích phân $\int_a^b [\alpha f(x) \pm \beta g(x)] \, dx = \alpha \int_a^b f(x) \, dx \pm \beta \int_a^b g(x) \, dx$

Cách giải

Ta có: $\int_0^1 \left[f(x) - 2g(x)\right] \, dx = \int_0^1 f(x) \, dx - 2 \int_0^1 g(x) \, dx = 2 - 2.5 = -0.5$

CHÍNH SÁCH C

Câu 7:

Phương pháp

Thể tích khối cầu bán kính R là $V = \frac{4}{3} \pi R^3$
Cách giải

Thể tích khối cầu bán kính \(R = a \) là \(V = \frac{4}{3} \pi a^3 \)

CHỌN A

Câu 8:

Phương pháp

- Tìm ĐKXĐ.
- Biến đổi \(\log_a f(x) = n \iff f(x) = a^n \)

Cách giải

Điều kiện: \(x^2 - x + 2 > 0 \) (luôn đúng với \(\forall x \))

Khi đó phương trình tương đương \(x^2 - x + 2 = 2 \iff x^2 - x = 0 \iff x(x - 1) = 0 \iff \begin{cases} x = 0 \\ x = 1 \end{cases} \)

Vậy tập nghiệm của phương trình là \(S = \{0;1\} \).

CHỌN B

Câu 9:

Phương pháp

Mặt phẳng \((Oxz)\) có phương trình là \(y = 0 \)

Cách giải

Mặt phẳng \((Oxz)\) có phương trình là \(y = 0 \)

CHỌN C

Câu 10:

Phương pháp

Sử dụng bảng nguyên hàm các hàm số cơ bản.

Cách giải

Ta có: \(\int f(x) \, dx = \int (e^x + x) \, dx = e^x + \frac{1}{2} x^2 + C \)

CHỌN B
Câu 11:
Phương pháp:
Thay lần lượt tọa độ các điểm \(Q;M;P;N \) vào phương trình đường thẳng \(d \).

Cách giải:
Thay tọa độ điểm \(P(1;2;3) \) vào phương trình đường thẳng
\[
\frac{x - 1}{2} = \frac{y - 2}{-1} = \frac{z - 3}{2}
\]
ta được
\[
\frac{1 - 1}{2} = \frac{2 - 2}{-1} = \frac{3 - 3}{2} = 0 \quad \text{nên} \quad P \in d.
\]
CHỌN C.

Câu 12:
Phương pháp:
Dựa vào công thức tổ hợp: \(C^k_n = \frac{n!}{k!(n-k)!} \).

Cách giải:
Ta có \(C^k_n = \frac{n!}{k!(n-k)!} \).

CHỌN A.

Câu 13:
Phương pháp:
Sử dụng công thức \(u_n = u_1 + (n-1)d \).

Cách giải:
Ta có \(u_4 = u_1 + 3d = 2 + 3.5 = 17 \).

CHỌN B.

Câu 14:
Phương pháp:
Diểm biểu diễn số phức \(z = a + bi \) trên hệ tọa độ là \(M(a;b) \).

Cách giải:
Điểm biểu diễn số phức $z = -1 + 2i$ là $Q(-1; 2)$

CHỌN D.

Câu 15:

Phương pháp:

+ Từ hình dạng đồ thị hàm số ta xác định được đây là đồ thị của hàm số dạng $y = \frac{ax + b}{cx + d}$
+ Đồ thị hàm số $y = \frac{ax + b}{cx + d}$ nhận đường thẳng $y = \frac{a}{c}$ làm tiệm cận ngang và $x = \frac{-d}{c}$ làm tiệm cận đứng.

Từ đồ thị hàm số cho trước ta xác định TCN và TCD để chọn được đáp án đúng.

Cách giải:

Từ đồ thị hàm số ta xác định được đây là đồ thị của hàm số dạng $y = \frac{ax + b}{cx + d}$ nên loại C và D.

Nhận thấy đồ thị hàm số trên hình nhận $y = 1$ làm TCN và $x = 1$ làm TCD

+ Đồ thị hàm số $y = \frac{2x - 1}{x - 1}$ nhận $y = 2$ làm TCN và $x = 1$ làm TCD nên loại A.
+ Đồ thị hàm số $y = \frac{x + 1}{x - 1}$ nhận $y = 1$ làm TCN và $x = 1$ làm TCD nên chọn B.

CHỌN B.

Câu 16:

Phương pháp:

Dựa vào đồ thị hàm số ta xác định được điểm cao nhất và điểm thấp nhất của đồ thị trên đoạn $[-1; 3]$.

Tung độ điểm cao nhất là giá trị lớn nhất của hàm số, tung độ điểm thấp nhất là giá trị nhỏ nhất của hàm số trên đoạn $[-1; 3]$.

Từ đó ta tìm được $M; m \Rightarrow M - m$.

Cách giải:
Từ đồ thị hàm số ta thấy trên đoạn \([-1;3]\) thì điểm cao nhất của đồ thị là điểm \(A(3;3)\) và điểm thấp nhất của đồ thị là \(B(2;-2)\) nên GTLN của hàm số là \(M = 3\) và GTNN của hàm số là \(m = -2\).

Từ đó \(M - m = 3 - (-2) = 5\).

CHÒN D.

Câu 17:

Phương pháp:

Giải phương trình \(f'(x) = 0\) rồi lập bảng biến thiên để xác định các điểm cực trị

Hoặc ta xét trong các nghiệm của phương trình \(f'(x) = 0\) thì qua nghiệm bậc lẻ \(f'(x)\) sẽ đổi đầu, qua nghiệm bậc chẵn thì \(f'(x)\) không đổi đầu. Hay các nghiệm bị lệ là các điểm cực trị của hàm số đã cho.

Cách giải:

Ta có \(f'(x) = 0 \Rightarrow x(x-1)(x+2)^3 = 0 \Rightarrow x = 0\) và các nghiệm này đều là nghiệm bậc lẻ nên hàm số đã cho có ba điểm cực trị.

CHÒN A.

Câu 18:

Phương pháp:

Ta sử dụng hai số phức bằng nhau. Cho hai số phức \(z_1 = a_1 + b_1i; z_2 = a_2 + b_2i\), khi đó \(z_1 = z_2 \iff \begin{cases} a_1 = a_2 \\ b_1 = b_2 \end{cases}\)

Cách giải:
Ta có \(2a + (b + i)i = 1 + 2i \iff 2a + bi + i^2 = 1 + 2i \iff 2a + b \iff 2a - 1 + bi = 1 + 2i \iff \begin{cases} 2a - 1 = 1 \\ b = 2 \end{cases} \iff \begin{cases} a = 1 \\ b = 2 \end{cases} \\

CHỌN D.

Câu 19:

Phương pháp:
Tính bán kính \(R = IA = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2 + (z_A - z_I)^2} \)

Phương trình mặt cầu có tâm \(I(x_o; y_o; z_o) \) và có bán kính \(R \) có dạng:
\[(x - x_o)^2 + (y - y_o)^2 + (z - z_o)^2 = R^2 \]

Cách giải:
Ta có bán kính mặt cầu \(R = IA = \sqrt{(1 - 1)^2 + (2 - 1)^2 + (3 - 1)^2} = \sqrt{5} \)

Phương trình mặt cầu tâm \(I(1; 1; 1) \) và bán kính \(R = \sqrt{5} \) là \((x - 1)^2 + (y - 1)^2 + (z - 1)^2 = 5 \)

CHỌN B.

Câu 20:

Phương pháp:
Dùng các công thức loga để biến đổi \(\log_{16} 27 \) theo \(\log_2 3 \)

\[\log_a b = \frac{n}{m} \log_a b; \log_a b = \frac{1}{\log_a b} (0 < a; b \neq 1) \]

Hoặc sử dụng máy tính bằng cách thử đáp án.

Cách giải:
Ta có \(\log_{16} 27 = \log_2 (3^3) = 3 \log_2 3 = \frac{3}{4} \log_2 2 = \frac{3}{4} \)

CHỌN B.

Chú ý khi giải:
Ta có thể sử dụng MTCT bằng cách thử đáp án

Bước 1: Lưu \(\log_3 2 \) vào A
Bước 2: Bấm máy thử đáp án $\log_{10} 27$ – các đáp án. Trường hợp nào có kết quả bằng 0 thì ta chọn.

Câu 21:
Phương pháp:
+ Giải phương trình để tìm các nghiệm phức z_1, z_2 bằng máy tính.
+ Áp dụng công thức tính modun của số phức: $z = a + bi \Rightarrow |z| = \sqrt{a^2 + b^2}$.

Cách giải:
Ta có:
\[
z^2 - 3z + 5 = 0 \iff \begin{cases} z_1 = \frac{3}{2} + \frac{\sqrt{11}}{2}i \\ z_2 = \frac{3}{2} - \frac{\sqrt{11}}{2}i \end{cases}
\Rightarrow \begin{cases} |z_1| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(\frac{\sqrt{11}}{2}\right)^2} = \sqrt{5} \\ |z_2| = \sqrt{\left(\frac{3}{2}\right)^2 + \left(-\frac{\sqrt{11}}{2}\right)^2} = \sqrt{5} \end{cases}
\Rightarrow |z_1| + |z_2| = 2\sqrt{5}.

CHỌN A

Câu 22:
Phương pháp:
+ Xác định được vị trí tương đối của hai mặt phẳng (P) và (Q).
+ Hai mặt phẳng (P) và (Q) song song với nhau thì: $d((P), (Q)) = d(M, (Q))$ với M là một điểm thuộc (P).
+ Sử dụng công thức kinh khoa học từ điểm $M(x_0; y_0; z_0)$ đến mặt phẳng (P): $ax + by + cz + d = 0$ là:
\[
d(M; (P)) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.
\]

Cách giải:
Ta có: $\overrightarrow{n}_p = (1; 2; 2)$, $\overrightarrow{n}_Q = (1; 2; 2)$
\[
\Rightarrow \frac{A}{A'} = \frac{B}{B'} = \frac{C}{C'} \neq \frac{D}{D'} \Rightarrow (P) // (Q)
\]
\[
d((P), (Q)) = d(M, (Q)) \text{ với } M \text{ là một điểm thuộc } (P).
\]
Chọn $M(10; 0; 0)$ là một điểm thuộc P.

Khi đó ta có: $d((P), (Q)) = d(M, (Q)) = \frac{|10 + 2.0 + 2.0 - 3|}{\sqrt{1^2 + 2^2 + 2^2}} = \frac{7}{3}$.

CHỌN B

Câu 23:

Phương pháp:

+) Giải bất phương trình: $a^{f(x)} > a^m \iff f(x) > m$ khi $a > 1, m \in \mathbb{R}$ và $a^{f(x)} > a^m \iff f(x) < m$ khi $0 < a < 1, m \in \mathbb{R}$.

Cách giải:

Giải bất phương trình ta được:

$3^{x^2 - 2x} < 27 \iff 3^{x^2 - 2x} < 3^3$
$\iff x^2 - 2x < 3 \iff x^2 - 2x - 3 < 0$
$\iff (x + 1)(x - 3) < 0$
$\iff -1 < x < 3$.

Vậy tập nghiệm của bất phương trình là: $(-1; 3)$.

CHỌN C

Câu 24:

Phương pháp:

+) Công thức tính diện tích hình phẳng được giới hạn bởi các đồ thị hàm số $x = a, x = b, (a < b)$, $y = f(x)$ và $y = g(x)$. Lái: $S = \int_a^b |f(x) - g(x)|dx$.

Cách giải:

Đưa vào hình vẽ (ta thấy $f(x)$ nằm trên $g(x) \forall x \in [-1; 2] \Rightarrow f(x) \geq g(x) \forall x \in [-1; 2]$) và công thức tính diện tích hình phẳng ta được công thức tính diện tích phần gạch chéo là:

$S = \frac{1}{2}(x^2 + 3 - x^2 + 2x + 1)dx = \frac{1}{2}(-2x^2 + 2x + 4)dx$.

CHỌN D

Câu 25:
Phương pháp:

+) Sử dụng công thức:

\[h = \sqrt{l^2 - R^2} \].

+) Thể tích hình nón có bán kính \(R \) và đường cao \(h \) là:

\[V = \frac{1}{3}\pi R^2 h. \]

Cách giải:

Xét \(\Delta SAO \) vuông tại \(O \) có:

\[SO = \sqrt{SA^2 - AO^2} = \sqrt{(2a)^2 - a^2} = a\sqrt{3}. \]

Khi đó ta có:

\[V = \frac{1}{3}\pi R^2 h = \frac{1}{3}\pi a^2 \cdot a\sqrt{3} = \frac{\pi a^3 \sqrt{3}}{3}. \]

CHỌN A

Câu 26:

Phương pháp:

+) Dựa vào bảng biến thiên để xác định các điểm cần của đồ thị hàm số.

+) Đường thẳng \(x = a \) là điểm cần dùng của đồ thị hàm số \(y = f(x) \) khi \(\lim_{x \to a} f(x) = \pm \infty. \)

+) Đường thẳng \(y = b \) là điểm cần ngang của đồ thị hàm số \(y = f(x) \) khi \(\lim_{x \to \pm \infty} f(x) = b. \)

Cách giải:

Dựa vào bảng biến thiên ta có:

+) Đồ thị hàm số có 1 điểm cần dùng là: \(x = 1 \).

+) Đồ thị hàm số có 2 điểm cần ngang là: \(y = 2, y = 5. \)

Vậy đồ thị hàm số có 3 đường điểm cần.

CHỌN C

Câu 27:

Phương pháp:

Sử dụng công thức giải nhanh thể tích khối chóp từ giác đều có cạnh bằng \(a \) là:

\[V = \frac{a^3 \sqrt{2}}{6}. \]

Cách giải:
Với bài toán, khởi chop từ giác có cạnh bằng \(2a\) nên \(V = \frac{(2a)^3 \sqrt{2}}{6} = \frac{4\sqrt{2}a^3}{3}\).

CHỌN A

Câu 28:

Phương pháp:

+) Sử dụng công thức tính đạo hàm của hàm hợp: \((\log_a u)' = \frac{u'}{u \ln a}\).

Cách giải:

Sử dụng công thức tính đạo hàm của hàm hợp ta được:

\[f'(x) = \left[\log_2 (x^2 - 2x) \right]' = \frac{(x^2 - 2x)'}{(x^2 - 2x) \ln 2} = \frac{2x - 2}{(x^2 - 2x) \ln 2}. \]

CHỌN D

Câu 29:

Phương pháp:

+) Số nghiệm của phương trình \(f(x) = m\) là số giao điểm của đồ thị hàm số \(y = f(x)\) và đường thẳng \(y = m\).

+) Dựa vào BBT để xác định số giao điểm của các đồ thị hàm số.

Cách giải:

Ta có: \(P_t \iff 2f(x) = -3 \iff f(x) = -\frac{3}{2}. \) (*)

Số nghiệm của phương trình (*) là số giao điểm của đồ thị hàm số \(y = f(x)\) và đường thẳng \(y = -\frac{3}{2}\).

Dựa vào BBT ta thấy đường thẳng \(y = -\frac{3}{2}\) cắt đồ thị hàm số \(y = f(x)\) tại 4 điểm phân biệt.

\(\Rightarrow P_t \) (*) có 4 nghiệm phân biệt.

CHỌN A

Câu 30:

Phương pháp:
+ Góc giữa hai mặt phẳng là góc giữa hai đường thẳng thuộc hai mặt phẳng cùng vuông góc với giao tuyến chung của hai mặt phẳng.

Cách giải:

Cách 1: Có thể giải theo phương pháp gán hệ trực toa độ.

Cách 2: Tìm hai đường thẳng lần lượt vuông góc với hai mặt phẳng.

Ta có:
\[
\begin{align*}
&AD \perp A'D \\
&AD \perp A'B' \Rightarrow AD \perp (A'B'CD)
\end{align*}
\]

Lại có:
\[
\begin{align*}
&A'D \perp A'D' \\
&A'D \perp C'D' \Rightarrow A'D \perp (ABC'D')
\end{align*}
\]

Do đó góc giữa hai mặt phẳng \((ABC'D')\) và \((A'B'CD)\) bằng góc \(AD\) và \(A'D\)

Mà \(A'D \perp AD'\)

Vậy góc cần tìm bằng 90°

CHỌN D.

Câu 31:

Phương pháp:

Tim điều kiện xác định của phương trình.

Giải phương trình đưa phương trình về dạng phương trình bậc hai ẩn \(t\).

Sử dụng hệ thức Vi-et để biến đổi tông 2 nghiệm của phương trình ban đầu.

Cách giải:

\[
\log_3 (7 - 3^t) = 2 - x
\]

Điều kiện: \(7 - 3^t > 0\)

\[
pt \iff 7 - 3^t = 3^{2x} \iff 7 - 3^t = \frac{9}{3^x} \iff 7.3^x - \left(3^t\right)^2 = 9 \iff 3^x - 7.3^t + 9 = 0 (*)
\]

Đặt \(t = 3^x \quad (t > 0) \Rightarrow x = \log_3 t\). Thay vào phương trình (*) ta có:

\[
\iff t^2 - 7t + 9 = 0 \quad (**)
\]

Nhận thấy (**): \(\Delta = 13 > 0, \ S = 7 > 0, \ P = 9 > 0 \Rightarrow \) phương trình (**) có 2 nghiệm dương phân biệt giả số là: \(t_1, t_2\)
Áp dụng hệ thức Vi-et cho phương trình (**): ta được:

\[
\begin{aligned}
t_1 + t_2 &= 7 \\
t_1 t_2 &= 9
\end{aligned}
\]

Khi đó ta có: \(x_1 + x_2 = \log_3 t_1 + \log_3 t_2 = \log_3 (t_1 t_2) = \log_3 9 = 2\)

CHỌN A.

Câu 32:

Phương pháp:
Áp dụng công thức tính thể tích khối trù \(V = \pi r^2 h\) trong đó \(r\) là bán kính của khối trù; \(h\) là chiều cao của khối trù.

Sử dụng đề bài để tính thể tích toàn bộ khối đồ chơi từ đó tìm được thể tích của khối trù \((H_1)\).

Cách giải:

Thể tích của toàn bộ khối đồ chơi là:

\[
V = \pi r_1^2 h_1 + \pi r_2^2 h_2 = \pi r_1^2 h_1 + \pi \frac{1}{4} r_1^2 \cdot 2h_1 = \frac{3}{2} \pi r_1^2 h_1 = 30
\]

\(\Rightarrow \pi r_1^2 h_1 = 20\)

Vậy thể tích khối trù \((H_1)\) là 20 cm³.

CHỌN C.

Câu 33:

Phương pháp:

Cách 1: Sử dụng công thức tính nguyên hàm của 1 tổng.

Cách 2: Đạo hàm từng đáp án của đề bài, kết quả nào ra đúng \(f(x)\) thì đó là đáp án đúng.

Cách giải:

Thử từng đáp án ta có:

Thử đáp án A: \((2x^2 \ln x + 3x^2)^{'} = 4x \ln x + 2x^2 \cdot \frac{1}{x} + 6x = 4x \ln x + 8x\). Nên loại A.

Thử đáp án B: \((2x^2 \ln x + x^2)^{'} = 4x \ln x + 2x^2 \cdot \frac{1}{x} + 2x = 4x \ln x + 2x + 2x = 4x(1 + \ln x)\)

\(\Rightarrow 2x^2 \ln x + x^2\) là một nguyên hàm của hàm số \(f(x) = 4x(1 + \ln x)\).

\(\Rightarrow\) Họ nguyên hàm của hàm số \(f(x) = 4x(1 + \ln x)\) là \(2x^2 \ln x + x^2 + C\).
CHỌN D.

Câu 34:

Phương pháp:

Nhận xét $AB // (SCD)$ $\Rightarrow d\left(B; (SCD)\right) = d\left(A; (SCD)\right) = d$

Bài toán về tìm khoảng cách từ A đến mặt phẳng (SCD)

Cách giải:

Ta có: $AB // (SCD) \Rightarrow d\left(B; (SCD)\right) = d\left(A; (SCD)\right) = d$

Kè $AH \perp CD; AK \perp SH$

\[
\begin{aligned}
&\begin{cases}
CD \perp SA \\
CD \perp AH
\end{cases} \\
\Rightarrow & CD \perp (SAH) \Rightarrow CD \perp AK \Rightarrow AK \perp (SCD) \\
\Rightarrow & d\left(B; (SCD)\right) = d = AK.
\end{aligned}
\]

Xét ΔAHD vuông tại H, $\angle ADH = 60^\circ$ ta có: $AH = AD.\sin 60^\circ = \frac{a\sqrt{3}}{2}$

Áp dụng hệ thức lượng trong ΔSAH vuông tại A có đường cao AK ta có:

\[
AK = \frac{SA.AH}{\sqrt{SA^2 + AH^2}} = \frac{a.\frac{a\sqrt{3}}{2}}{\sqrt{a^2 + \frac{3a^2}{4}}} = \frac{a\sqrt{21}}{7} = d
\]

CHỌN A.

Câu 35:

Phương pháp:

Bước 1: Xét vị trí tương đối của đường thẳng và mặt phẳng, nhận thấy (d) cắt (P) tại H.

Bước 2: Lấy 1 điểm A bất kỳ thuộc d; tìm hình chiếu vuông góc của A trên (P) giả sử là K.

Bước 3: Phương trình đường thẳng đi qua 2 điểm H và K chính là đường thẳng cần tìm.

Cách giải:

Xét vị trí tương đối của đường thẳng (d) và mặt phẳng (P) với: $vtcp\overrightarrow{u_q} (1;2;-1); vtp t\overrightarrow{n_p} (1;1;1)$ ta có:

$\overrightarrow{u_q} \cdot \overrightarrow{n_p} = 1.1 + 2.1 + (-1).1 = 2 \neq 0$. Nên (d) cắt (P)
Gọi \(H = d \cap (P) \Rightarrow H(t; 2t - 1; -t + 2) \in (P) \Rightarrow t + 2t - 1 - t + 2 - 3 = 0 \Leftrightarrow 2t - 2 = 0 \Rightarrow t = 1 \)

\(\Rightarrow H(1;1;1) \)

Lấy \(A(2;3;0) \in d \). Pt đường thẳng đi qua A vuông góc với \((P) \) do
\[
\begin{cases}
x = 2 + t \\
y = 3 + t \\
z = t
\end{cases}
\]

Gọi K là hình chiếu của \(A \) lên \((P) \) do
\(\Rightarrow 2 + t + 3 + t + t - 3 = 0 \Leftrightarrow 3t + 2 = 0 \Rightarrow t = -\frac{2}{3} \Rightarrow K\left(\frac{4}{3}; -\frac{2}{3}; \frac{7}{3} \right) \)

\(HK = \left(\frac{1}{3}; \frac{4}{3}; -\frac{5}{3} \right)/\left(1;4;5 \right) \) di qua \(H(1;1;1) \)

CHỌN C.

Câu 36:

Phương pháp:

Hàm số \(y = f(x) \) nghịch biến trên \(D \) khi và chỉ khi \(f'(x) \leq 0 \) \(\forall x \in D \) và bằng 0 tại hữu hạn điểm.

Cách giải:

Ta có: \(f'(x) = -3x^2 - 12x + (4m - 9) \)

Hàm số đã cho nghịch biến trên \((-\infty; -1) \) do \(f'(x) \leq 0 \) \(\forall x \in (-\infty; -1) \)

\(\Leftrightarrow -3x^2 - 12x + (4m - 9) \leq 0 \ \forall x \in (-\infty; -1) \)

\(\Leftrightarrow 4m \leq 3x^2 + 12x + 9 = g(x) \ \forall x \in (-\infty; -1) \)

\(\Leftrightarrow 4m \leq \min_{x \in (-\infty; -1)} g(x) \)

Xét hàm số: \(g(x) = 3x^2 + 12x + 9 \) ta có: \(g'(x) = 6x + 12 = 0 \Leftrightarrow x = -2 \)

\(\Rightarrow \min_{x \in (-\infty; -1)} g(x) = g(-2) = -3 \)

\(\Rightarrow 4m \leq -3 \Leftrightarrow m \leq -\frac{3}{4} \)

CHỌN C.

Câu 37:
Phương pháp:
Số phức \(z = a + bi, (a, b \in \mathbb{R}) \) là số thuận ao khi và chỉ khi phần thực = 0 (tức a = 0)

Cách giải:
Đặt \(z = a + bi \ (a, b \in \mathbb{R}) \)

\[(z + 2i)(\bar{z} + 2) = [a + (b + 2)i](a + 2 - bi) \]
\[= a(a + 2) + b(b + 2) + [(a + 2)(b + 2) - ab]i \]

Số \((z+2i)(\bar{z}+2)\) là số thuận ao \iff Phần thực = 0 \iff a^2 + 2a + b^2 + 2b = 0 \iff (a + 1)^2 + (b + 1)^2 = 2

Vậy đường tròn tâm biểu diễn số phức đã cho có tâm là \(I(-1; -1) \)

CHỌN D.

Câu 38:

Phương pháp:
Sử dụng công thức tính tích phân để tìm ra kết quả như đầu bài từ đó tìm được a, b, c.

Cách giải:

\[\int \frac{xdx}{(x + 2)^2} = \int \frac{x + 2}{(x + 2)^2} -\int \frac{2}{(x + 2)^2} \ dx = \left(\ln |x + 2| + \frac{2}{x + 2} \right)_{0}^{1} \]
\[= \ln 3 + \frac{2}{3} \ln 2 - 1 = \ln 3 - \ln 2 - \frac{1}{3} \]
\[\begin{cases} a = -\frac{1}{3} \\ b = -1 \Rightarrow 3a + b + c = 3 \left(-\frac{1}{3} \right) - 1 + 1 = -1. \end{cases} \]

CHỌN B.

Câu 39:

Phương pháp:
Cố lập m, đưa bất phương trình về dạng \(g(x) \ < m \ \forall x \in (a;b) \iff m \geq \max_{[a;b]} g(x). \)

Cách giải:
Theo đề bài ta có: \(f(x) < e^x + m \Leftrightarrow f(x) - e^x < m \)

Đặt \(g(x) = f(x) - e^x \). Khi đó:

\[
f(x) < e^x + m \quad \forall x \in (-1;1) \\
\Rightarrow g(x) = f(x) - e^x < m \quad \forall x \in (-1;1) \\
\Leftrightarrow m \geq \max_{[-1;1]} g(x) \\
g'(x) = f'(x) - e^x
\]

Trên \((-1;1)\) ta có \(f'(x) < 0; e^x > 0 \quad \forall x \in R \Rightarrow g'(x) < 0 \quad \forall x \in (-1;1) \)

\[
\Rightarrow g(x) \text{ nghịch biến trên } (-1;1).
\]

\[
\Rightarrow \max_{[-1;1]} g(x) = g(-1) = f(-1) - e^{-1} = f(-1) - \frac{1}{e}
\]

\[
\Rightarrow m \geq f(-1) - \frac{1}{e}.
\]

CHỌN C.

Câu 40:

Phương pháp:

+) Tính số phân từ của không gian mẫu.

+) Tính số phân từ của biên cơ.

Chọn cho cho từng học sinh nam, sau đó chọn cho cho học sinh nữ, sử dụng quy tắc nhân.

+) Tính xác suất của biên cơ.

Cách giải:

Số phân từ của không gian mẫu là \(n(\Omega) = 6! \).

Gọi biên cơ A: "Các bạn học sinh nam ngồi đối diện các bạn nữ".

Chọn cho cho học sinh nam thứ nhất có 6 cách.

Chọn cho cho học sinh nam thứ 2 có 4 cách (không ngồi đối diện học sinh nam thứ nhất)

Chọn cho cho học sinh nam thứ 3 có 2 cách (không ngồi đối diện học sinh nam thứ nhất, thứ hai).

Xếp cho cho 3 học sinh nữ: 3! cách.

\[
\Rightarrow n_A = 6 \cdot 4 \cdot 3! = 288 \text{ cách.}
\]
\[P(A) = \frac{288}{6!} = \frac{2}{5}. \]

CHỌN A.

Câu 41:

Phương pháp:

Gọi \(I(a; b; c) \) là điểm thỏa mãn dạng thức \(2IA + 3IB = \bar{0} \), tìm tọa độ điểm I.

Sử dụng công thức công phân tích biểu thức đã cho bằng cách chèn điểm I.

+) Đánh giá, tìm GTNN của biểu thức.

Cách giải:

Gọi \(I(a; b; c) \) là điểm thỏa mãn dạng thức \(2IA + 3IB = \bar{0} \)

\[\Rightarrow 2(2 - a; -2 - b; 4 - c) + 3(-3 - a; 3 - b; -1 - c) = \bar{0} \]

\[\Rightarrow \begin{cases} 4 - 2a - 9 - 3a = 0 \\ 5a - 5 = 0 \\ a = 1 \end{cases} \]

\[\Rightarrow \begin{cases} -4 - 2b + 9 - 3b = 0 \\ -5b + 5 = 0 \Rightarrow b = 1 \Rightarrow I(-1; 1; 1) \\ c = 1 \end{cases} \]

Ta có:

\[2MA^2 + 3MB^2 = 2MA^2 + 3MB^2 \]

\[= 2(MI + IA)^2 + 3(MI + IB)^2 \]

\[= 5MI^2 + (2IA^2 + 3IB^2) + MI(2IA + 3IB) \]

\[= 5MI^2 + (2IA^2 + 3IB^2) \]

Do I, A, B có định nên \(2IA^2 + 3IB^2 = \text{const} \).

\[\Rightarrow (2MA^2 + 3MB^2)_{\text{min}} \Leftrightarrow 5MI^2_{\text{min}} \Leftrightarrow M là hình chiếu của I trên (P) \]

Gọi \((\Delta) \) là đường thẳng đi qua I vuông góc với (P), ta có phương trình của \((\Delta) \): \[
\begin{align*}
x &= -1 + 2t \\
y &= 1 - t \\
z &= 1 + 2t
\end{align*}
\]

M là hình chiếu của I lên (P) \(\Rightarrow M \in (\Delta) \Rightarrow M(-1+2t; 1-t; 1+2t) \).

Lại có \(M \in (P) \).
\[2(-1+2t) - (1-t) + 2(1+2t) - 8 = 0 \]
\[\Leftrightarrow -2 + 4t - 1 + t + 2 + 4t - 8 = 0 \]
\[\Leftrightarrow 9t - 9 = 0 \Leftrightarrow t = 1 \Rightarrow M (1;0;3) \]

Khi đó ta có

\[
MI^2 = 4 + 1 + 4 = 9; \quad IA^2 = 9 + 9 + 9 = 27; \quad IB^2 = 4 + 4 + 4 = 13
\]
\[
\Rightarrow \left(2MA^2 + 3MB^2\right)_{\text{min}} = 5.9 + 2.27 + 3.12 = 13.5
\]

CHỌN A.

Câu 42:

Phương pháp:

+) Gọi số phức \(z = a + bi \Rightarrow \overline{z} = a - bi \).

+) Từ mỗi giải thiết đã cho, tìm đường biểu diễn số phức \(z \).

+) Tìm giao điểm của đường biểu diễn số phức \(z \) ở giải thiết thứ nhất và thứ 2.

Cách giải:

Gọi số phức \(z = a + bi \Rightarrow \overline{z} = a - bi \).

Từ giải thiết thứ nhất ta có:

\[
|z|^2 = 2|z + \overline{z}| + 4 \Leftrightarrow a^2 + b^2 = 2|a + bi + a - bi| + 4 \Leftrightarrow a^2 + b^2 - 2.2|a| - 4 = 0 \Leftrightarrow \left[a^2 + b^2 - 4a - 4 = 0 \right] \left[a^2 + b^2 + 4a - 4 = 0 \right]
\]
\[
\Rightarrow \text{Tập hợp các số phức } z \text{ là đường tròn } (C_1): x^2 + y^2 - 4x - 4 = 0 \text{ hoặc } (C_2): x^2 + y^2 + 4x - 4 = 0.
\]

Từ giải thiết thứ hai ta có:

\[
|z - 1 - i| = |z - 3 + 3i|
\]
\[
\Leftrightarrow |a - 1 + bi - i| = |a - 3 + bi + 3i|
\]
\[
\Leftrightarrow (a - 1)^2 + (b - 1)^2 = (a - 3)^2 + (b + 3)^2
\]
\[
\Leftrightarrow -2a + 1 - 2b + 1 = -6a + 9 + 6b + 9
\]
\[
\Leftrightarrow -4a - 8b - 16 = 0
\]
\[
\Leftrightarrow a - 2b - 4 = 0
\]
\[
\Rightarrow \text{Tập hợp các số phức } z \text{ là đường thẳng } x - 2y - 4 = 0 (d).
\]

Vậy số phức thỏa mãn 2 giải thiết trên là số giao điểm của \(d \) với \((C_1) \) và \((d) \) với \((C_2) \).
Đưa vào hình và ta thấy có 3 giao điểm của d với (C_1) và (d) với (C_2). Vậy có 3 số phức thỏa mãn yêu cầu bài toán.

CHỌN B.

Chú ý: Sau khi tìm ra các đường biểu diễn số phức z, học sinh có thể làm tiếp theo phương pháp giải hệ phương trình bằng phương pháp thế.

Câu 43:

Phương pháp:

+) Đặt $t = \sin x$, đưa vào khoảng giá trị của x xác định khoảng giá trị của t.

+) Có lập m, đưa phương trình về dạng $f(t) = m$, khi đó số nghiệm của phương trình là số giao điểm của đồ thị hàm số $y = f(t)$ và $y = m$.

Cách giải:

Đặt $\sin x = t$. Với $x \in (0; \pi) \Rightarrow t \in (0; 1]$.

Khi đó phương trình ban đầu trở thành $f(t) = m$ có nghiệm $t \in (0; 1]$.

Số nghiệm của phương trình là số giao điểm của đồ thị hàm số $y = f(t)$ và $y = m$.

Đưa vào đồ thị hàm số ta thấy, đề phương trình $f(t) = m$ có nghiệm $t \in (0; 1] \Rightarrow m \in [-1; 1]$.

CHỌN D.

Chú ý: Sau khi đặt ân phụ $t = \sin x$, nhiều học sinh xác định khoảng giá trị của t, nên biểu diễn trên đường tròn lượng giác để thu được kết quả đúng nhất.

Câu 44:

Phương pháp:
Áp dụng công thức lãi kép cho bài toán trả góp \(A = \frac{N(1+r)^n \cdot r}{(1+r)^n - 1} \)

Trong đó \(A \) số tiền phải trả mỗi tháng, \(N \) là số tiền nợ, \(r \) là lãi suất, \(n \) là số tháng.

Cách giải:

Số tiền mỗi tháng phải trả là: \(A = \frac{100(1+1\%)^{\frac{5}{12}} \cdot 1\%}{(1+r)^{\frac{5}{12}}} \approx 2,22 \) (triệu)

Chọn A.

Câu 45:

Phương pháp:

+) Gọi I là tâm mặt cầu, xác định hình chiếu H của điểm I lên (P).

+) Đỗ đường thẳng (\(\Delta \)) cắt mặt cầu (S) tại 2 điểm sao cho chúng có khoảng cách nhỏ nhất thì đường thẳng (\(\Delta \)) đi qua E và vuông góc với \(HE \).

Cách giải:

Để thấy \(E \in (P) \). Gọi I(3; 2; 5) là tâm khối cầu.

\[x = 3 + 2t \]

Đường thẳng qua I vuông góc với (P): \[y = 2 + 2t \quad (d) \]
\[z = 5 - t \]

Gọi H là hình chiếu của I lên (P) \(\Rightarrow H \in (d) \Rightarrow H(3 + 2r; 2 + 2r; 5 - t) \)

Lại có \(H \in (P) \)

\[2(3 + 2r) + 2(2 + 2r) - 5 + t - 3 = 0 \]
\[6 + 4t + 4 + 4t - 5 + t - 3 = 0 \]
\[9t + 2 = 0 \quad \Rightarrow t = \frac{-2}{9} \Rightarrow H\left(\frac{23}{9}; \frac{14}{9}; \frac{47}{9}\right) \]

\[\overrightarrow{EH}\left(\frac{5}{9}; \frac{5}{9}; \frac{20}{9}\right) = \frac{5}{9}(1; 1; 4) \]

Để đường thẳng (\(\Delta \)) cắt mặt cầu (S) tại 2 điểm sao cho chúng có khoảng cách nhỏ nhất thì đường thẳng (\(\Delta \)) đi qua E và vuông góc với \(HE \).
Ta có: \[
\begin{pmatrix}
 \underline{u} \\
 \underline{a}
\end{pmatrix} \perp \begin{pmatrix}
 \underline{n} \\
 \underline{a}
\end{pmatrix} \Rightarrow \begin{pmatrix}
 \underline{u} \\
 \underline{a}
\end{pmatrix} = \begin{bmatrix}
 2 & -1 & 2 \\
 1 & 4 & 1 \\
 1 & 1 & 1
\end{bmatrix} = (9; -9; 0) = 9(1; -1; 0).
\]

Vây đường thẳng (\Delta) đi qua E và nhận (1; -1; 0) là 1 VTCP.

Vây phương trình đường thẳng (\Delta): \[
x = 2 + t \\
y = 1 - t \\
z = 3
\]

CHỌN C.

Câu 46:

Phương pháp:

+) Viết phương trình Elip, tính diện tích Elip.

+) Tính diện tích phần trăng, ứng dụng tích phân để tính diện tích hình phân.

+) Tính diện tích phần xanh sau đó tính chi phí để Sơn.

Cách giải:

(E) đã cho có độ dài trục lớn 2a = 8 \Rightarrow a = 4 , độ dài trục bé 2b = 6 \Rightarrow b = 3.

Ta có diện tích (E) bằng : \[S_{(E)} = \pi.4.3 = 12\pi \left(m^2 \right)\]

Phương trình (E): \[
\frac{x^2}{16} + \frac{y^2}{9} = 1 \Rightarrow y^2 = 9\left(1 - \frac{x^2}{16}\right) \Leftrightarrow y = \pm \frac{3\sqrt{16-x^2}}{4}.
\]

Ta có \[M \in (E); y_M = \frac{1}{2}MQ = \frac{3}{2} \Rightarrow x_M = -2\sqrt{3} \Rightarrow M \left(-2\sqrt{3}; \frac{3}{2}\right)\]

Diện tích phần giới hạn bởi (E), trục Ox, đường thẳng MQ có diện tích:

\[S_{AMQ} = 2\int_{-4}^{-2\sqrt{3}} \frac{3\sqrt{16-x^2}}{4} \ dx \approx 1.087 \Rightarrow \text{Diện tích phần trăng là: } S_{træng} = 2S_{AMQ} = 2.174 \left(m^2 \right)\]

Khi đó diện tích phần xanh là \[S_{xænh} = S_{(E)} - S_{træng} = 12\pi - 2.174 = 35.525 \left(m^2 \right)\].

Vậy chi phí để Sơn biển quảng cáo là 2.174.100 + 35.525.200 \approx 7322 \text{ (nghìn đồng)} \approx 7322000 \text{ đồng.}

CHỌN A.

Câu 47:

Phương pháp:
Phân chia khối đa diện: \(V_{AMPB} = V_{C'C'PQ} - V_{CABB'A'} \). Xác định các tỉ số về chiều cao và diện tích đáy để suy ra tỉ số giữa chổp, lăng trụ,…

Cách giải:

Gọi diện tích đáy, chiều cao, thể tích của hình lăng trụ ABC.A'B'C' lần lượt là \(S; h; V \Rightarrow V = Sh \).

Ta có: \(\Delta A'B'C' \sim \Delta PQC' \) theo tỉ số \(\frac{1}{2} \) \(\Rightarrow S_{C'C'PQ} = \frac{1}{2} h.4S = \frac{4}{3} V \).

Ta có: \(S_{ABNM} = \frac{1}{2} S_{ABB'A'} \Rightarrow V_{CABNM} = \frac{1}{2} V_{CABB'A'} \)

Mà

\[
V_{CABB'A'} = \frac{2}{3} V \Rightarrow V_{CABNM} = \frac{1}{2} \cdot \frac{2}{3} V = \frac{1}{3} V \Rightarrow V_{C'C'ABNM} = V - \frac{1}{3} V = \frac{2}{3} V
\]

Vậy \(V_{AMPB} = \frac{4}{3} V - \frac{2}{3} V = \frac{2}{3} V \).

CHỌN D.

Câu 48:

Phương pháp:

Hàm số \(y = f(x) \) đồng biến trên \((a;b)\) khi và chỉ khi \(f'(x) \geq 0 \ \forall x \in (a;b) \) và bằng 0 tại hữu hạn điểm.

Lưu ý công thức tính đạo hàm của hàm hợp. Sau đó tự ý lập bài để chọn kết quả đúng.

Cách giải:

Ta có: \(y = 3f(x+2) - x^3 + 3x \Rightarrow y' = 3f'(x+2) - 3x^2 + 3 \).

Xét \(-1 < x < 0\) ta có:

\[
\begin{cases}
1 < x + 2 < 2 \Rightarrow f'(x+2) > 0 \\
x^2 < 1 \Leftrightarrow x^2 - 1 < 0
\end{cases}
\Rightarrow 3f'(x+2) - 3x^2 + 3 > 0 \ \forall x \in (0;1).
\]

Vậy hàm số đạt cho đồng biến trên \((-1;0)\).

CHỌN C.

Câu 49:

Phương pháp:

+) Dựa phương trình đã cho về dạng tích, có nhận từ \(f(x) = (x-1)g(x) \).
+) Để bất phương trình luôn đúng với mọi \(x\) thì ta xét các trường hợp:

TH1: Phương trình \(m^2x^3 + m^2x^2 + (m^2 + m)x + m^2 + m - 6 = 0\) nghiệm đúng với mọi \(x\)

TH2: Đa thức \(m^2x^3 + m^2x^2 + (m^2 + m)x + m^2 + m - 6\) có nghiệm \(x = 1\)

+) Thử lại và kết luận.

Cách giải:

\[
f(x) = m^2(x^4 - 1) - 6(x - 1) \geq 0, \forall x
\]
\[
\leftrightarrow m^2(x^2 - 1)(x^2 + 1) + (x - 1)(x + 1) - 6(x - 1) \geq 0, \forall x
\]
\[
\leftrightarrow (x - 1)\left[m^2x^3 + m^2x^2 + (m^2 + m)x + m^2 + m - 6\right] \geq 0, \forall x
\]

Để bất phương trình luôn đúng với mọi \(x\) thì suy ra:

+ TH1: Phương trình \(m^2x^3 + m^2x^2 + (m^2 + m)x + m^2 + m - 6 = 0\) nghiệm đúng với mọi \(x\)

\[
\begin{align*}
m^2 &= 0 \\
m^2 &= 0 \\
m^2 + m &= 0 \\
m^2 + m - 6 &= 0
\end{align*}
\]
\[
\iff \begin{align*}
m^2 &= 0 \\
m^2 &= 0 \\
m^2 + m &= 0 \\
m^2 + m - 6 &= 0
\end{align*}
\]

+ TH2: Đa thức \(m^2x^3 + m^2x^2 + (m^2 + m)x + m^2 + m - 6\) có nghiệm \(x = 1\)

Khi đó: \(m^2 + m^2 + m + m^2 + m - 6 = 0 \iff 4m^2 + 2m - 6 = 0 \iff
\]
\[
\begin{align*}
m^2 &= 0 \\
m^2 &= 0 \\
m^2 + m &= 0 \\
m^2 + m - 6 &= 0
\end{align*}
\]

Thử lại:

+ Với \(m = 1\) thì \((x - 1)\left[3x^3 + x^2 + 2x - 4\right] \geq 0 \iff (x - 1)^2 (x^3 + x + 2 + 4) \geq 0\) (luôn đúng)

+ Với \(m = -\frac{3}{2}\) thì \((x - 1)\left[9x^3 + \frac{9}{4}x^2 + \frac{9}{4}x - 2\right] \geq 0 \iff (x - 1)(3x^3 + 3x^2 + x - 7) \geq 0\)

\[
\leftrightarrow (x - 1)^2 (3x^3 + 6x + 7) \geq 0\] (luôn đúng)

Do đó \(m = 1; m = -\frac{3}{2}\) là các giá trị cần tìm.
Tổng $S = 1 - \frac{3}{2} = -\frac{1}{2}$.

CHỌN C.

Câu 50:

Phương pháp:

- Từ đồ thị hàm số $y = f'(x)$ tìm một quan hệ giữa m, n, p, q.
- Thay vào phương trình đã cho, giải phương trình tìm nghiệm.

Cách giải:

$f(x) = mx^4 + nx^3 + px^2 + qx + r$

Từ đồ thị hàm số $y = f'(x)$ dễ thấy $m \neq 0$.

Phương trình $f(x) = r \iff mx^4 + nx^3 + px^2 + qx = 0 \iff \begin{cases} x = 0 \\ mx^3 + nx^2 + px + q = 0 \end{cases}$ (*)

Xét $f'(x) = 4mx^3 + 3nx^2 + 2px + q = 0$ có ba nghiệm $x_1 = -1; x_2 = \frac{5}{4}; x_3 = 3$.

Theo hệ thức Vi-et:

\[
\begin{cases}
 x_1 + x_2 + x_3 = -\frac{b}{a} \\
 x_1x_2 + x_2x_3 + x_3x_1 = \frac{c}{a} \\
 x_1x_2x_3 = -\frac{d}{a}
\end{cases}
\]

Ta có:

\[
\begin{cases}
 \frac{13}{4} = -\frac{3n}{4m} \\
 \frac{1}{2} = \frac{2p}{4m} \\
 -\frac{15}{4} = -\frac{q}{4m}
\end{cases} \iff \begin{cases}
 n = -\frac{13}{3}m \\
 p = -m \\
 q = 15m
\end{cases}
\]

Thay vào (*) được $mx^3 - \frac{13}{3}mx^2 - mx + 15m = 0 \iff x^3 - \frac{13}{3}x^2 - x + 15 = 0 \iff \begin{cases} x = -\frac{5}{3} \\
 x = 3
\end{cases}$

Vậy phương trình đã cho có 3 nghiệm phân biệt $x_1 = 0; x_2 = 3; x_3 = -\frac{5}{3}$

CHỌN B.